If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3c^2+12c+8=0
a = 3; b = 12; c = +8;
Δ = b2-4ac
Δ = 122-4·3·8
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{3}}{2*3}=\frac{-12-4\sqrt{3}}{6} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{3}}{2*3}=\frac{-12+4\sqrt{3}}{6} $
| w+73=3w-57 | | 9=r=17 | | 9x-x=3x-54-x | | 0.5(4x+8)=24 | | 2x-85=239 | | x+x+x+x+10=25+x | | (4)x=320 | | 1+3+-5x=44+5x | | 7(3+24n)=21 | | 5z-1=3z+27 | | -69(8x-3)=114 | | 2+(2x5)=14 | | 2z-52=z+28 | | 28=-6x-12=2x | | 4x-x+2=16+x | | x+18=7x-90 | | 12.4y+7.3=230.5 | | 8u-3u=25 | | x=-16x^2+208x-200 | | w+48=4w+12 | | -4(5x+4)-x-1=−164 | | -28=4(-10+p) | | 2x-83x=7 | | H(x)=-16T^2+208T-200 | | u-16=2u-61 | | 2z=3z-36 | | w+30=6w-30 | | 2u+37=5u-83 | | 4z+18=2z+26 | | 9=3/4x-12 | | 2(15.3)=n+5.7 | | 5(13+10c)=15 |